Аннотация к рабочей программе по геометрии, 10 класс

Рабочая программа по геометрии для 10 класса в МАОУ Сорокинской СОШ №3 на 2021-2022 учебный год составлена на основании следующих нормативно-правовых документов:

- -Федерального государственного образовательного стандарта среднего общего образования, утверждённого приказом Министерства образования и науки Российской Федерации от 17.05.2012 №413,в ред. Приказа Минобрнауки России от 29.12.2014 №1645, от 31.12.2015 №1578, от 29.06.2017 №613
- -Основной образовательной программы среднего общего образования МАОУ Сорокинской СОШ №3, утверждённой приказом по школе от 08.08.2018 г. №133/3-ОД (с изменениями 2021г.)
- -программа составлена с учетом авторской программы: Геометрия. Сборник рабочих программ.10-11 классы: пособие для учителей общеобразов. организаций / [сост. Т. А. Бурмистрова]. 2-е изд., дораб. М.: Просвещение, 2018.

Учебный комплект: Геометрия. 10-11 классы: учеб. Для общеобразоват. огранизаций/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев. М.: 4-е издание; Просвещение, 2017.

Учебный план (количество часов):

10 класс- 2 часа в неделю, 68 часов в год

Рабочая программа по геометрии для 10 класса будет реализовывается на оборудовании центра образования цифрового и гуманитарного профиля «Точка роста»

Цель изучения курса геометрии в 10 классе

В ходе изучения курса учащиеся развивают навыки решения стереометрических задач, систематизируют способы решении различных (планиметрических и стереометрических) задач, в том числе и практических, что способствует успешной сдаче ЕГЭ и дальнейшему эффективному обучению в ВУЗе.

В основе обучения геометрии лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены основные содержательно-целевые направления (линии) развития учащихся средствами предмета.

Предметная компетенция. Здесь под предметной компетенцией понимается осведомленность школьников о системе основных математических представлений и овладение ими основными предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Здесь под коммуникативной компетенцией понимается сформированность умения ясно и четко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая ее

критическому анализу. Формируются следующие образующие эту компетенцию умения: извлекать информацию из разного рода источников, преобразовывая ее при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Здесь под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать ее на составные части, на которых будет основываться процесс ее решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Здесь под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, ее месте в системе других наук, а также ее роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких значимых черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.

Задачи:

- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- формирование интеллекта, а также личностных качеств, необходимых человеку для полноценной жизни, развиваемых математикой: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание отношения к математике как к части общечеловеческой культуры, формирование понимания значимости математики для научно-технического прогресса.

Задачи курса геометрии для достижения поставленных целей в 10 классе

- изучение свойств пространственных тел;
- формирование умений применять полученные знания для решения практических задач, проводить доказательные рассуждения, логически обосновывать выводы для изучения школьных естественнонаучных дисциплин на базовом уровне.

Формы организации учебного процесса:

• индивидуальные, групповые, индивидуально-групповые, фронтальные, классные и внеклассные.

Повторение на уроках проводится в следующих видах и формах:

- повторение и контроль теоретического материала;
- разбор и анализ домашнего задания;
- математический диктант;
- самостоятельная работа;
- контрольные срезы.

Формы текущего контроля и промежуточной аттестации

Предусмотрены разнообразные виды контроля (вводный, текущий, промежуточный, тематический, итоговый).

Содержание учебного предмета.

1. Аксиомы стереометрии и их следствия (4 часа).

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство). Перпендикулярность прямых.

Учащиеся должны уметь: распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;

2. Параллельность прямых и плоскостей (21 час).

Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Параллельность плоскостей, признаки и свойства.

Учащиеся должны уметь: описывать взаимное расположение прямых в пространстве, аргументировать свои суждения об этом расположении; строить простейшие сечения куба, тетраэдра;

3. Перпендикулярность прямых и плоскостей (19 часов).

Перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Учащиеся должны уметь: описывать взаимное расположение плоскостей в пространстве, аргументировать свои суждения об этом расположении; анализировать в простейших случаях взаимное расположение объектов в пространстве;

4. Многогранники (13 часов).

Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Сечения призмы, пирамиды. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Учащиеся должны уметь: изображать основные многогранники; выполнять чертежи по условиям задач; строить простейшие сечения призмы, пирамиды; решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей).

5. Векторы (6 часов).

Определение вектора, его модуля; определение равенства векторов; правила действий над векторами; определение угла между векторами; определение коллинеарных векторов; определение компланарных векторов.

Учащиеся должны уметь: выполнять действия над векторами; находить угол между векторами; выполнять разложение по двум неколлинеарным векторам; выполнять разложение по трем некомпланарным векторам; проводить доказательные рассуждения в ходе решения задач.

6. Итоговое повторение (8 часов).

Прямые и плоскости в пространстве. Основные понятия стереометрии (точка, прямая, плоскость, пространство). Перпендикулярность прямых. Пересекающиеся, параллельные и скрещивающиеся прямые. Угол между прямыми в пространстве. Параллельность плоскостей, признаки и свойства. Перпендикулярность прямой и плоскости, признаки и свойства. Теорема о трех перпендикулярах. Перпендикуляр и

наклонная. Угол между прямой и плоскостью. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Расстояния от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Угол между векторами. Коллинеарные векторы. Разложение по трем некомпланарным векторам. Многогранники. Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида, ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Сечения призмы, пирамиды. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Учащиеся должны уметь: использовать при решении стереометрических задач планиметрические факты и методы; проводить доказательные рассуждения в ходе решения задач; использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур; вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.